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SUMMARY 

The finite element discretization of the inviscid Boussinesq equations is studied with particular 
emphasis on the conservation properties of the discrete equations. Methods which conserve the total 
energy, total temperature and total temperature squared, or two of the above mentioned quantities, are 
presented. The effect of time discretization, and other numerical errors, on the conservation laws is 
considered. Finally, the theory is supported and illustrated by several numerical experiments. 
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1. INTRODUCTION 

In this paper we consider the inviscid, time-dependent Boussinesq equations; our purpose is 
to construct finite element approximations whkh conserve the total energy (B), total 
temperature (n and total temperature squared (T'), or at least two of the above quantities. 
Though the use of conservative forms for discrete equations is widespread in the finite 
difference literature, this approach seems to have received little attention from finite element 
workers. Fix' studied a finite element model for isothermal ocean circulation problems using 
the stream function vorticity formulation. This method conserved kinetic energy, vorticity 
and mean square vorticity (or enstrophy), and, as a result, he was able to show that the 
method would not suffer from aliasing errors to any great extent. Lee et a!? considered the 
inviscid Boussinesq problem and concluded that it was possible to conserve one of the total 
energy, total temperature or total temperature squared, but they were unable to find a 
method which conserved two or indeed all three of the quantities. They found that a method 
which conserved the quadratic quantities was most stable in terms of time integration, 
whereas the standard advective form, which does not conserve any of the three quantities 
mentioned above, performed very poorly in time integrations. 

2. CONSERVATION PROPER= OF THE CONTINUUM EQUATIONS 

The equations for an inviscid, Boussinesq fluid in a two-dimensional region R, with boundary 
r are: 

p -++.Qu = -Vp-pgyT, in R, (1) 

(2) 
K )  

V.u=O, i n R ,  

~ + ~ . v T = o ,  in R, (3) ar 
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where p is the density, u the velocity, p the pressure, g the acceleration due to  gravity, y the 
volumetric coefficient of thermal expansion and T the temperature. We shall consider the 
case of a contained flow, so that appropriate boundary conditions are 

u.n=O, o n r ,  (4) 

where n is the outward pointing, unit normal vector on r. 
From (3) we see that 

a --T+o.vT" = o ,  
a t  

so that 

= - u. VT" 

= - (u. 0)T = 0. 

Thus the integral of any power of T is constant (and indeed any function of T). 
From (1) we find 

= .- u . V p - p ~ .  gyT, 

so 

' ~ f p u 2 = - ~ V . [ ~ p u 2 + ~ ) u ] -  df h pn.gyT 

Now 

= - h  pr . gyn . V T  

where r is the position vector. 
Thus we find from (4), (6) and (7) that 

(7) 

This equation expresses the fact that the total energy of the fluid is constant. 
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3 .  GALERKIN DISCRETIZATION 

In this section we consider the numerical discretization of the equations. We use the 
Galerkin form of the finite element method to discretize in space, and time will appear as a 
parameter. This leads to a set of coupled, nonlinear, ordinary differential equations for the 
nodal parameters. We shall not show explicitly the dependence of the functions on time. 

The starting point for the finite element method is a weak form of equations (1)-(4). We 
introduce the following notation: Let H'(fl) be the space of all functions having square 
integrable first derivatives over R, let L,(fl) be the space of functions square integrable over 
R and let H'(f1) = H '(a) x H'(R), be the space of vector valued functions having square 
integrable first derivatives over R. Finally let HA(fl) be that subspace of H'(f1) whose 
elements have vanishing normal component on r. A weak form of (1)-(4) may be written: 

Find O E H ~ ( R ) ,  TEH'(Q), p ~ L ~ ( f l )  such that 

I, (p :+ 0 .  V o +  a o V .  of pgyT . w ) 
- b  p v . w = o ,  V w E H m ,  (9) 

Provided the solution of (9)-(11) is sufficiently smooth, the weak form is equivalent to the 
differential form. Note that p is only determined up to a constant. Two parameters, a and 0, 
have been introduced, and from the point of view of the continuum equations, their values 
make no difference to the solution since V . P = 0. However, when we discretize, V . o is only 
zero in an average sense, and different choices of a and do lead to different discrete forms. 
Thus a and p provide a certain degree of flexibility in the numerical method. Lee et 0 1 . ~  used 
this flexibility in order to obtain conservation properties for the discrete equations. 

To obtain a set of semi-discrete equations, we replace the spaces %(R), H'(fl) and L2(fl) 
by finite element subspaces S",(n), Sxfl) and S:(n). Here, h is some measure of the element 
size, and the spaces have the property that, as h + 0, any function in the corresponding 
infinite-dimensional space can be approximated, with arbitrary accuracy, by a member of the 
corresponding finite element space. 

Find oh E S ~ ,  Th E S;, p E S: such that 
The semi-discrete problem may be written: 

In ($$+oh . V u h + a o h V . o h + p g y T h  . w h -  phV.wh = O  V w h ~ S t :  (12) 

(13) 

Jc, f$+uh . v T " + P P V . O ~ ) R ' = O  VRh€S: .  (14) 

In  practice, a basis is chosen for the finite element spaces with the property that each basis 
function has a relatively small support. This leads to a set of ordinary differential equations 
with sparse coefficient matrices. 

) b  
I, (V.nh)qh=O VqhES;  
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Since the pressure is only unique up to an additive constant, its value must be specified at 
some node, and at that node, the continuity equation cannot be applied. However, nothing is 
lost by this process, since the discrete equations are guaranteed to conserve mass globally 
because of the boundary conditions on P. 

We now examine the conditions under which the semi-discrete equations conserve total 
energy, temperature and temperature squared. From (14) and since 1 E Sk, we have 

c + v  . (PhTh) + (0 - 1 ) P V .  Uh = 0 h at  

i.e. 

Also from (14) and the fact that Th E S:, we have 

"b P 2 = ( 1 - 2 p )  Th2V.uh. 
dt h 

From (12) and the fact that ah E S ~ ,  we have 

The last term is zero since ph E S!,  and equation (13) is satisfied. 
Thus 

The first term on the right-hand side of (17) is the rate of change of the discrete kinetic 
energy. We must relate the second term to the rate of change of potential energy in the 
discrete problem. 

Now 

where r is the position vector. To proceed further we require that rE Sx;(n) x This will 
be true provided that the mapping of the elements from local co-ordinates to the region is 
carried out by means of the basis functions in Sg;(n), i.e. that the elements are sub- 
parametric with respect to the temperature field. So, if r E S:(;(n) x S!#-l)., we have from (18) 
and (14) 

d dl pr. g y p  = -mg. h r(oh.  VT" + PThV. oh), 

using the vector identity 

r(uh. V)Th = V .  (ohrT")-uhTh -r(V . u)Th 

we find 

pr . gyTh = -pyg .  nhTh + (1 - p)pyg. 
d 
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Thus 

p r .  gy'7"' +(p-  1) p y g  . r(V. uh)Th h dt h 
and from (17), (18) and (19) 

a) h uhZV. uh + (1 - 0) p-yg . r(V . uh)Th. {tpuhz + p r  . gyTh) = (4 - (20) h dt 

Clearly then, for the semi-discrete equations to conserve temperature (resp. temperature 
squared, resp. total energy), we have the necessary and sufficient condition that the 
right-hand side of (15) (resp. (16), resp. (20)) be zero. 

to be 
conserved. Further, with the particular choice a = i, 0 = 1, the temperature and total energy 
are conserved. This result is at variance with Lee el aL2 who, due to an error in their analysis 
of the discrete potential energy, obtained equation (20) but with -@ multiplying the last term 
on the right-hand side rather than (1 - 0). They found, however, that total energy was not 
conserved in time integrations of the semi-discrete equations in this case. Since the above 
analysis proves that the semi-discrete total energy is constant, the lack of conservation in 
their calculation must arise from either time integration errors, quadrature errors, con- 
vergence errors or rounding errors or possibly a combination of these errors. The effect of 
the above errors on the conservation property can however be made very small and, in our 
numerical experiments, total energy, in the case a =& p = 1, was conserved virtually to 
machine accuracy (see the section on numerical experiments). 

is conserved. Further 

_ -  
By suitable choices of a and p it is possible to arrange for any one of T, TZ or 

If we take a = 5, /3 = i, then will be conserved if 

h Th(V. uh) = 0 

and will be conserved if 

The crucial observation is that (21) and (22) will be satisfied provided 

Th E S:(sZ), V T" E Sx;(sz), (23) 

and 

g . rTh E Sfd(i2), V Th E SxsZ). (24) 
This follows directly fr.om equation (13). 

Thus the problem is essentially that of constructing suitable finite element spaces for the 
various fields. It should be noted that we are not free to choose St(i-2) independently of 
Sk(0). One has to be careful not to make SE(;(sz) too big, otherwise spurious pressure modes 
a ~ p e a r . ~ . ~  
In most of the finite element solutions of incompressible flow in primitive variables 

published to date, the pressure field has been approximated either by a piecewise constant or 
piecewise linear polynomial (in the latter case it is possible either to have continuous or 
discontinuous pressure approximations). With a piecewise linear continuous pressure field it 
is possible to satisfy (23) by using piecewise linear polynomials for the temperature field. 
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Table I. Summary of conservation properties for 
various combinations of parameters and tem- 

perature interpolation 

Temperature Quantitive 
Formulation CY p interpolation conserved 

I1 I I  8 'J T2 
I 

IV 0 0  8 T 

I 2  1 1  4 E, Z F  
1 1  

111 + 1  8 E, -T 

This combination would produce semi-discrete equations which conserve total temperature 
and total temperature squared. 

However, linear interpolation for the pressure is clearly inadequate if (24) is to be 
satisfied. In a recent publication4 Jackson and Cliffe introduced a new element for incom- 
pressible flow calculations in which the pressure field is approximated by the eight-noded 
quadrilateral serendipity element.5 The velocities are approximated by a nine-noded ele- 
ment, which has eleven parameters: the nine values at the nodes together with two 
independent derivatives at the central node. It is worth noting that the additional parameters 
incur very little extra computational cost in the frontal method of solution, since the front 
width is virtually unchanged. The shape functions for the element are given in the appendix 
in terms of the local co-ordinates. Jackson and Cliffe4 have shown that the element does not 
suffer from spurious pressure modes. 

The higher order interpolation of pressure makes it possible to satisfy equation (24). To 
see this we note that, in terms of local co-ordinates 6 and 7, a basis for the pressure 
approximation on a given element is the set of monomials: 

If the temperature field is approximated using the standard four-noded element, a basis is 
the set of monomials: 

{1,& 9.591. 
It is thus clear that (24) will be satisfied if g . c is a strictly linear function of ( and q. This 

means that the elements cannot be fully isoparametric but must, in fact, be parallelograms. 
Four different formulations are summarized in Table I, in terms of the parameters (Y and 

0, the temperature interpolation and the conserved quantities. The temperature interpola- 
tion is restricted to either the four-noded bilinear element or the eight-noded biquadratic 
serendipity element. Clearly there are many other possible combinations, but we have only 
investigated the four in Table I so far. 

4. THE EFFECT OF TIME DISCRETIZATION AND OTHER ERRORS ON THE 
CONSERVATION LAWS 

In the previous section we established conservation properties for various semi-discrete 
forms of the inviscid Boussinesq equations. In this section we consider the effect of various 
numerical errors on the conservation properties. 

Firstly we consider the effect of time discretization. We may write the semi-discrete 
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equations in the form 

jr=f(y). (25) 
In order to preserve the conservation properties we clear1 y require a nondissipative method 
of integration for (25). The simplest such method is probably the trapezoidal rule (Crank- 
Nicholson) which leads to 

y"+l -y" =$f(y"+')+f(y")). At 

However, as Lee et al.' point out, it is easy to see that whilst the discretization (26) will 
preserve the conservation properties of linear quantities, for quadratic quantities which are 
conserved in the semi-discrete equations, the conservation properties are lost. 

The alternative second-order nondissipative method namely, the midpoint rule, does 
preserve the conservation properties of quadratic quantities, and this leads to 

yn+' -y" =Atf(+(y"+' +y")). (27) 
It is a straightforward matter to establish that the conservation properties of formulations 
I-IV are preserved by (27). 

The second potential cause of error is in the solution of the non-linear system of equations 
(27). In this study we have used a Newton-Raphson method to solve (27) and in this case it 
is easy to see that, in exact arithmetic, linear conservation properties are preserved at each 
iteration, whereas for quadratic quantities, the conservation properties are, in general, only 
preserved in the limit of convergence. In practice, of course, the convergence error for a 
Newton method will be less than machine precision after a few iterations. 

Thirdly, since the conservation properties depend on the exact form of the discrete 
equations, quadrature errors (i.e. errors in evaluating the integrals involving the basis 
functions) should be avoided. In our program we have used integration schemes which are 
sufficiently accurate to evaluate all integrals exactly. We note here that allowing general 
isoparametric transformations of the elements leads to integrals which cannot be evaluated 
without quadrature error by Gaussian integration schemes. 

Finally, all the conservation properties are affected by rounding errors, which, although 
they cannot be avoided, are usually very small. 

5. NUMERICAL EXPERIMENTS 

In this section we describe the numerical experiments we have done to support and illustrate 
the theory presented in the previous sections. The problem we have applied formulations 
I-IV to is the inviscid flow within a closed cavity, studied by Lee et aL2 

The region and mesh, consisting of twelve, nine-noded rectangular elements, are shown in 
Figure 1. The initial conditions are 

u, = 0, 
-(I - lOx)(l- 10y) O S X ,  y 50.1 

To=[ 0 otherwise 

The boundary conditions for velocity are 
a.n=O 



x 0-12 

0. OL 

n 

T 
-tr I 

Figure I .  The mesh of twelve, nine-noded, rectangular ele- 
ments 

on r (no boundary conditions are required for temperature). The other values used in the 
computations are lgl= l-O(g . r  = - \gl y) and p = y = 1.0. For this problem the total energy, 
total temperature and total temperature squared are constant. 

The program we have used for the calculations is based on the TGSL finite element 
package developed by the Theory of Fluids Group at Harwell. The time integration 
algorithm uses an explicit predictor to give a good initial guess for the solution of the 
corrector (27), and also to choose time steps to keep the local truncation error less than some 
preassigned value. 
The nonlinear corrector equations are solved by the Newton-Raphson algorithm, with the 

L I I I I I 

t 
0 2 1 6 8 to  

Figure 2. Plot of total energy against time for formu- 
lations I and I1 
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Figure 3. Rot of total energy against time for formu. 
lations I11 and IV 

frontal method being used to solve the linear system produced at each iteration. For the 
calculations presented here, we have either used just one Newton iteration, or else suffi- 
ciently many so that the convergence errors were of the order of machine precision. The 
calculations were run on an IBM 3033 and double precision variables (having approximately 
16.8 decimal digits) were used throughout. The integrations were carried out up to time 10 
for formulations I and 11. For I11 and IV, the solution ‘blew up’ at times -2-7 and -7 
respectively (see Figures 3 and 4). This type of behaviour was reported by Lee et aL2 

All four formulations conserved total temperature very well, the typical relative error 

1 0 6  

104 

l o 2  
N 

I- 

1 

10-2 

10-4 

111 I V  

I I I I I 
2 L 6 8 10 

t 

Figure 4. Plot of total temperature squad against 
time for formulations 111 and N 
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being of order Formulation I was run both with a one-step Newton and an iteration- 
to-convergence method. In the former case, the relative error for total energy and tempera- 
ture squared was of order Thus the 
one-step Newton method yields perfectly acceptable accuracy. Formulation I1 conserved 
total temperature squared very well but the total energy in this case exhibited slow growth as 
shown in Figure 2. Formulation 111 suffered from an explosive growth in total temperature 
squared at time -2.7 (see Figure 4). The behaviour of the total energy in this case depended 
on whether a one-step Newton method was used. With the one-step Newton method, the 
total energy also suffered explosive growth. However, with an iteration-to-convergence 
method, the total energy was conserved, with a relative error of order lo-”, right up to the 
time at which the calculation was stopped. 

The behaviour of IV was similar to that of 111, with the explosive growth coming at a later 
time. 

whereas, in the latter, it was of order 

CONCLUSIONS 

We have presented several finite element formulations of the inviscid Boussinesq equations 
which conserve some or all of the following quantities: total energy, total temperature and 
total temperature squared. The numerical experiments that we have done are in full 
agreement with the theoretical properties of the schemes. It is also clear that schemes 
conserving quadratic quantities are inherently more stable than those conserving only linear 
quantities. 
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APPENDIX 
The basis functions for the element introduced by Jackson and Cliffe are given here in terms 
of the local co-ordinates (t, q). There are eleven basis functions associated with each velocity 
field. The functions 4i (i = 1,. . . ,9) are associated with node i and dlo and 411 are 
associated with node 9 (see Figure 5). 

41 = H E 2  - 0 ( q 2  - q )  

42 =&”+ 5)(T2-  77) 
ds=%(t2+t)(7i2+?) 
(64 = $(t2 - tKqZ + 7) 
(6 -1 -2(1-t2~(q2-q3) 

d7=4(1-e2)(q2+T?3) 
4 -1 

49 = (1 - t3 (1  - $1 

411 = (1 - t2)(T? - 11’) 

46 = $(t2 + t3)u - 77”) 

8 - 2 ( t 2  - [’)(I - qz)  

= (5 - t3x1  - 
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Figure 5. Node numbering and local co-ordinates for the 
nine-noded rectangular element 

The basis functions for the pressure are the same as those for the standard eight-noded 
biquadratic serendipity element.5 
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